Item no.: T60404-N4641-X803 Differential Current Sensor with tripping characteristic acc. to the partly combined standards IEC62752:2016 and UL2231-2 Ed.2 Date: 16.11.2022 Page 1 of 7 K-No.:30560 Description toroidal core PCB mounting Customer: Standard type • Fluxgate current sensor with **Characteristics** - Excellent accuracy - Switching open-collector outputs - Compact design Patents: EP2571128 / US9397494 / CN103001175 // EP2813856 **Applications** Mainly used for stationary and mobile applications: - IC-CPD acc. to IEC62752 - Personnel Protection Systems for EV acc. to UL2231 | Electrical data | a – Ratings | min. | typ. | max. | Unit | |------------------------------|---|------|----------|-----------------------|--------| | I _P | Primary rated current (1phase / 3phase) | | | 80 / 40 | Α | | $I_{\Delta N1}$ | Rated residual fault current 1 | | 6 | | mA dc | | $I_{\Delta N2}$ | Rated residual fault current 2 | | 20 | | mA rms | | IΔN3 | Rated residual fault current 3 | | 30 | | mA rms | | I _{ΔN1, tolerance} | Trip tolerance 1 (PIN X6/30-OUT) | 4 | | 6 | mA dc | | I _{ΔN2, tolerance} | Trip tolerance 2 (PIN X6/30-OUT) | 20 | | 30 | mA rms | | I _{ΔN3, tolerance} | Trip tolerance 3 (PIN X20-OUT) | 15 | | $20^{(1)} / 70^{(2)}$ | mA rms | | Spwm-out | Scaling factor of the rms component (for monitoring purpose only!) | | 2 | | %/mA | | I _{ΔRI,1/2} (Fig.1) | Recovery current level for I _{ΔN1} or I _{ΔN2/3} (absolute value dc/rms) | | 2.5 / 10 | | mA | (1) f = rated frequency (2) f = 2kHz Accuracy - Dynamic performance data | $I_{\Delta N, max}$ | Measuring range (peak) | -300 | +300 | mA | |-----------------------|---|----------------|--|---------------------| | Χ | Resolution (@ $I_{\Delta N}$, $\Theta_A = 25^{\circ}$ C) | < 0.2 | | mA | | tr | Response times | | ding to IEC62752:201
rding to UL2231-2 Ed | | | f_{BW} | Frequency range | DC | 2 | kHz | | General data | | | | | | 9 _A | Ambient operation temperature | -40 | 85 | °C | | 9 Storage | Ambient storage temperature(4) | -40 | 85 | °C | | m | Mass | 21 | | g | | Vcc | Supply voltage | 4.8 5 | 5.2 | V | | Icc | Supply current | 33 | | mA rms | | Sclear, ps | Clearance (primary to secondary) | not applicable | e if insulated cable is | used ⁽⁵⁾ | | Screep, ps | Creepage (primary to secondary) | not applicable | e if insulated cable is | used ⁽⁵⁾ | | FIT | EN/IEC 61709 / SN 29500 ⁽⁶⁾ | <22 | 200 | fit | $^{^{(3)}}$ Switching time of a standard relay (IEC: t = 20ms / UL: t = 10ms) is considered. #### **General description of sensor function:** The Sensor is sensitive to AC and DC current and can be used for fault current detection in IC-CPD applications or personnel protection systems for EV. The Sensor detects DC & AC fault currents according to IEC62752:2016 and AC fault currents according to UL2231-2 Ed.2. In the event of a DC fault current, PIN 3 will change its state from a low level (GND) to high impedance state. In the event of an AC fault current, PINs 4 and/or 3 will change state from a low level (GND) to a high impedance state, see tab.1. Error conditions (e.g. an internal error) are signaled by PIN 1 (ERROR-OUT) which changes state to high impedance. | Datum | Name | Index | Änderung | | | | | |------------|---------|---------|-------------------|--------------------|--------------|--|-----------------| | 16.11.2022 | SF | 81 | Change of typical | application diagra | m. CN-22-157 | | | | | | | | | | | | | Editor. | :R&D-P[| D-NPI D | Designer: SF | | MC-PM: BZ | | Released by: SB | ⁽⁴⁾ see VAC M-sheet 3101; storage temperature inside cardboard packaging ⁽⁵⁾ Constructed, manufactured and tested in accordance with IEC60664-1:2020 Isolated wires are preferred. If isolated primary conductors are used, the isolation coordination is according to: Reinforced insulation, Insulation material group 1, Pollution degree 2, and overvoltage category III. ⁽⁶⁾ The results are valid under following conditions: 55°C mean component ambient temperature by continuous operation (8760h per year); Environment condition: ground mobile, no dust or harmful substances, according to IEC61709; Fit equals one failure per 10^9 component hours. ### Item no.: T60404-N4641-X803 Differential Current Sensor with tripping characteristic acc. to the partly combined standards IEC62752:2016 and UL2231-2 Ed.2 Date: 16.11.2022 K-No.:30560 Customer: Standard type Page 2 of 7 ### Mechanical outline (mm): General tolerances DIN ISO 2768-c #### Connections: PIN no. 1-8: 0.46mm x 0.46mm PIN no. 9-12: 0.7mm x 0.7mm ### Marking: benvac 4641-X803 F DC Content of Data-Matrix-Code is: benvac, 4641-X803, F, DC Datecode Format: [YWW] Example: J04: 2017, Week 4 Released by: SB #### PIN description: Editor.:R&D-PD-NPI D Designer: SF | PIN no. | Description | |---|---| | PIN 1 → ERROR-OUT (open collector output) | If no system fault is detected, the output PIN 1 is at low level (GND). If a system fault is detected, PIN is at high impedance state. In this case, PINs 3 and 4 will be set to a high impedance state too (see tab.1). | | PIN 2 → TEST-IN (refer to Fig. 2) | A function test including an offset measurement (this value is stored in EEPROM for further calculation) is activated if this PIN is connected to GND for a period of 40ms to 1.2s. If the PIN is set to GND less than 40ms or more than 1.2s, no function test will be performed. Attention: During the functional test and offset measurement, no differential current shall flow. To ensure high accuracy of the sensor this test shall be activated at regular intervals (e.g. at startup, before measuring). If a push-pull switch is used, the voltage range must be 0V5V. | | PIN 3 → X6/30-OUT (open collector output) | If the residual current is below 6mA dc and no system fault occurs the output on PIN 3 is a low level (GND). If the residual current is below the 30mA rms and no system fault occurs the output on PIN 3 is also a low level (GND). In any other case output PIN 3 is in a high impedance state (see tab. 1). | | PIN 4 → X20-OUT (open collector output) | If the residual current is below the 20mA rms and no system fault occurs the output on PIN 4 is a low level (GND). In any other case PINs 4 are in a high impedance state (see tab. 1). | | PIN 5 → GND | Ground connection | | PIN 6 → VCC | Positive supply voltage | | PIN 7 → PWM-OUT | Acc. to the DC component of residual current a duty-cycle with f=8kHz is generated. This is for monitoring purposes only and shall not be used to switch the power relay. Refer to S _{PWM-OUT} = 2%/mA | | PIN 8 → N.C. | Not connected | MC-PM: BZ ## Item no.: T60404-N4641-X803 Differential Current Sensor with tripping characteristic acc. to the partly combined standards IEC62752:2016 and UL2231-2 Ed.2 Date: 16.11.2022 K-No.:30560 Customer: Standard type Page 3 of 7 ### **Typical application diagram:** Recommended: C1, C3, C4 with 100nF to ground and C2 with 10nF to ground as optional EMC improvement. (Components have to be placed close to the device pins) L6 is not longer recommended for new designs, in existing layouts component L6 should be used with the following parameters: L6: Inductance ≤220 μH; DC Resistance 1 to 5 Ω #### Absolute maximung ratings(6): | | | Min. | Тур. | Max. | Unit | |----------------------------|--|------|------|------|------| | V _{CE} | Collector-emitter voltage (PINs 1, 3 and 4) | | | 40 | V | | Ic | Collector current (PINs 1, 3 and 4) | | | 50 | mA | | Vcc | Maximum supply voltage (without function) | -0.3 | | 6 | V | | U _{MAX} | Maximum rated voltage of primary conductors (AC rms) | | | 250 | V | | VTEST-IN, low | TEST-IN Input Voltage, low level | 0 | | 0.6 | V | | V _{TEST-IN, high} | TEST-IN Input Voltage, high level | 2.5 | | 5 | V | ⁽⁶⁾Stresses above these ratings may cause permanent damage. Exposure to these conditions for extended periods may degrade device reliability. Functional operation of the device at these or any other conditions beyond those specified is not supported. | Editor.:R&D-PD-NPI D | Designer: SF | MC-PM: BZ | | Released by: SB | |----------------------|--------------|-----------|--|-----------------| | | | | | | ### Item no.: T60404-N4641-X803 Differential Current Sensor with tripping characteristic acc. to the partly combined standards IEC62752:2016 and UL2231-2 Ed.2 Date: 16.11.2022 K-No.:30560 Customer: Standard type Page 4 of 7 Final Tests: (Measurements after temperature balance of the samples at room temperature, SC=significant characteristic) | (| | Min. | Max. | Unit | |-----------------------|--|------|------|------| | Vcc | Supply voltage | 4.9 | 5.1 | V | | Icc | Supply current | 16.0 | 28.0 | mA | | TEST-IN | TEST-IN voltage | 2.8 | 3.4 | V | | X6/30-OUT (normal) | X6/30-OUT voltage | 0 | 0.6 | V | | X20-OUT (normal) | X20-OUT voltage | 0 | 0.6 | V | | ERROR-OUT (normal) | ERROR-OUT voltage | 0 | 0.6 | V | | X6/30-OUT (activated) | X6/30-OUT voltage activated @5V, 1kΩ (pull-up)* | 4.9 | 5.1 | V | | X20-OUT (activated) | X20-OUT voltage activated @5V, 1kΩ (pull-up)* | 4.9 | 5.1 | V | | ERROR-OUT (activated) | ERROR-OUT voltage activated @5V, 1kΩ (pull-up)* | 4.9 | 5.1 | V | | TC1 (SC) | Trip current 1 – X6/30 | 4.5 | 5.4 | mA | | TC2 (SC) | Trip current 2 – X6/30 | -5.4 | -4.5 | mA | | TC3 (SC) | Trip current 3 – X30@50Hz | 20 | 30 | mΑ | | TC4 (SC) | Trip current 4 – X20@60Hz | 14 | 20 | mA | | TC5 (SC) | Trip current 5 – X30@1000Hz | 105 | 149 | mA | | PWM-OUT (frequency) | PWM-OUT frequency | 7.8 | 8.2 | kHz | | PWM-OUT (duty-cycle) | PWM-OUT duty-cycle @6mA, 60Hz | 11 | 13 | % | | LV1 (SC) | Limit values of break time - X6/30-OUT@6mA DC | 0 | 700 | ms | | LV2 (SC) | Limit values of break time - X6/30-OUT@30mA, 50 Hz | 0 | 300 | ms | | LV3 (SC) | Limit values of break time - X20-OUT@20mA, 60Hz | 0 | 1000 | ms | | | | | | | ^{*} the maximum values of collector-emitter voltage and current see "Absolute maximum ratings" <u>Product Tests:</u> The EMC product standards can only be fulfilled in the complete application system (more EMC test's can be shown if required). | | Acc. to VAC sheet M3238 Following tests differ from M3238: | passed | | |-----|--|--------|----| | | 4.5a: Damp heat, steady state. Duration: 1000h | | | | ESD | Air- and contact discharge; U= $\pm 2000V$, R= 1500Ω , C= $100pF$ acc. to Human Body Model JESD22-A114 | ±2.0 | kV | ### Item no.: T60404-N4641-X803 Differential Current Sensor with tripping characteristic acc. to the partly combined standards IEC62752:2016 and UL2231-2 Ed.2 Date: 16.11.2022 K-No.:30560 Customer: Standard type Page 5 of 7 | Requalification Tests: (replicated every year, Precondition acc. to M3238) | | | | | | | |--|----------|--|-----|--------|--|--| | Ûw, prim-sec | M3064 | Impulse test (1.2µs/50µs waveform) PIN 1-8 vs. insulated primary wire 5 pulse → polarity +, 5 pulse → polarity - | 5.5 | kV | | | | Ud | M3014 | Test voltage, 60s PIN 1-8 vs. insulated primary wire | 1.5 | kV rms | | | | U _{PDE} | M3024 | Partial discharge voltage (extinction) PIN 1-8 vs. insulated primary wire *acc. to table 24 | 1.2 | kV rms | | | | U _{PD} x 1.875 | M3024 | Partial discharge voltage (extinction) PIN 1-8 vs. insulated primary wire *acc. to table 24 | 1.5 | kV rms | | | | * IEO 04000 | F 4 0007 | | | | | | ^{*} IEC 61800-5-1:2007 #### **Other instructions:** - Temperature of the primary conductor should not exceed 105°C. - Vcc during Test-IN function test must be in rated range. - Housing and bobbin material UL-listed, flammability class 94V-0. - Fall- and rise-time of Vcc: t > 20μs/V - UL certification is still pending - Further standards UL 2231 E-file No. 488116, category FFUQ2 / FFUQ8 #### Figures: Fig. 1: Meaning of switching recovery level If the trip-level $I_{\Delta N1/3}/I_{\Delta N2}$ is accomplished the corresponding output X6/30-OUT/X20-OUT will change its state from low-level (GND) to high impedance. Depending on the existence of the differential curent I_{Δ} , the outputs X6/30-OUT/X20-OUT will remain in their states until I_{Δ} is below the recovery threshold $I_{\Delta R11/3}/I_{\Delta R12}$. | Editor.:R&D-PD-NPI D | Designer: SF | MC-PM: BZ | | Released by: SB | |----------------------|--------------|-----------|--|-----------------| | | | | | | ## Item no.: T60404-N4641-X803 Differential Current Sensor with tripping characteristic acc. to the partly combined standards IEC62752:2016 and UL2231-2 Ed.2 Date: 16.11.2022 K-No.:30560 Customer: Standard type Page 6 of 7 Fig. 2: Power-Up timing diagram Fig. 3: Interrupting Time according to IEC62752 (E)-1:2016, UL2231-2 Ed.2 and typical values of sensor Editor.:R&D-PD-NPI D Designer: SF MC-PM: BZ Released by: SB ## Item no.: T60404-N4641-X803 **Differential Current Sensor with tripping** characteristic acc. to the partly combined standards IEC62752:2016 and UL2231-2 Ed.2 Date: 16.11.2022 K-No.:30560 Fig. 4:IEC62752 and UL2231 response value over frequency | X6/30-OUT | X20-OUT | ERROR-OUT | State | | | | |--|----------------|-----------|---|--|--|--| | GND | GND | GND | Normal condition | | | | | High impedance | GND | GND | I _{∆N1} ≥ 6mA _{DC} | | | | | | | | $I_{\Delta N2} \ge 20 \text{mA}_{\text{rms}}$ - | | | | | GND | High impedance | GND | $30 mA_{rms}$ | | | | | High impedance | High impedance | GND | I _{ΔN3} ≥ 30mA _{rms} | | | | | High impedance High impedance High impedance Error, system fault | | | | | | | | All other conditions not mentioned in the table are not possible. If these | | | | | | | | conditions occur, the sensor is an unknown state and describes an Error. | | | | | | | Table 1: Possible output states | Editor.:R&D-PD-NPI D | Designer: SF | | MC-PM: BZ | | | Released by: SB | |---|--------------|--|-----------|--|--|-----------------| | | | | | | | | | Conving of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden. Any offenders are liable to pay all | | | | | | |